How do you evaluate cos(2Arctan(3/4))cos(2arctan(34))?

1 Answer
Jul 12, 2016

cos(2arctan(3/4))=7/25.cos(2arctan(34))=725.

Explanation:

Let arctan(3/4)=thetaarctan(34)=θ, sothat, by defn. of arctanarctan function, tantheta=3/4tanθ=34, and, theta in (-pi/2,pi/2)=(-pi/2,0)uu{0}uu(0,pi/2).θ(π2,π2)=(π2,0){0}(0,π2).

Note that, tantheta=3/4 >0, theta !in (-pi/2,0]tanθ=34>0,θ(π2,0], but, theta in (0,pi/2).θ(0,π2).

Now, reqd. value =cos(2arctan(3/4))=cos2theta=(1-tan^2theta)/(1+tan^2theta)={1-(3/4)^2}/{1+(3/4)^2}=(16-9)/(16+9)=7/25.=cos(2arctan(34))=cos2θ=1tan2θ1+tan2θ=1(34)21+(34)2=16916+9=725.