How do you evaluate #cos(2Arctan(3/4))#?

1 Answer
Jul 12, 2016

#cos(2arctan(3/4))=7/25.#

Explanation:

Let #arctan(3/4)=theta#, sothat, by defn. of #arctan# function, #tantheta=3/4#, and, #theta in (-pi/2,pi/2)=(-pi/2,0)uu{0}uu(0,pi/2).#

Note that, #tantheta=3/4 >0, theta !in (-pi/2,0]#, but, #theta in (0,pi/2).#

Now, reqd. value #=cos(2arctan(3/4))=cos2theta=(1-tan^2theta)/(1+tan^2theta)={1-(3/4)^2}/{1+(3/4)^2}=(16-9)/(16+9)=7/25.#