How do you evaluate #cos(arcsin(-2/3)) #?

1 Answer
Jun 28, 2015

Use #sin^2+cos^2=1# to get:

#cos(arcsin(-2/3)) = sqrt(5)/3#

Explanation:

Let #alpha = arcsin(-2/3)#

Then #sin(alpha) = -2/3#

#cos(alpha) = +-sqrt(1 - sin^2(alpha))#

#= +-sqrt(1-(2/3)^2)#

#= +-sqrt(1-4/9)#

#= +-sqrt(5/9)#

#= +-sqrt(5)/3#

By the definition of #arcsin#, #-pi/2 <= alpha <= pi/2#

so #cos(alpha) >= 0#

So we need to pick the positive square root and find:

# cos(arcsin(-2/3)) = cos(alpha) = sqrt(5)/3#