How do you evaluate cos(arcsin(35))?
2 Answers
May 26, 2018
Explanation:
The ratio
Note that
So
Consider a
We have:
sinA=oppositehypotenuse=35
cosA=adjacenthypotenuse=45
So:
cos(arcsin(35))=cos(A)=45
Alternatively, we could note more generally that:
cos2θ+sin2θ=1
Hence:
cosθ=±√1−sin2θ
If
cos(arcsin(x))=√1−x2
May 27, 2018
The inverse sine is multivalued, so