How do you evaluate cos(arcsin(35)arccos(12))?

2 Answers
Jun 8, 2015

cos[arcsin(35)arccos(12)]=

Explanation:

sinx=35=0.6--> x = 36.87 and x = 180 - 36.87 = 143.13 deg

cosy=12 --> y = +- 60 deg

a. cos (x - y) = cos (143.13 - 60) = cos 83,13 =0.12

b. cos (36.87 - 60) = cos (-23.23) = 0.92

Jun 8, 2015

An algebraic expression for this can be calculated using the properties of the right angled triangles with sides {3,4,5} and {1,sqrt(3),2} using the formula for cos(α+β).

Explanation:

cos(α+β)=cos(α)cos(β)sin(α)sin(β)

So

cos(αβ)=cos(α)cos(β)sin(α)sin(β)

=cos(α)cos(β)+sin(α)sin(β)

If sin(α)=35 and 0απ2 then

cos(α)=45

If cos(β)=12 and 0βπ2 then

sin(β)=32

Then

cos(αβ)

=cos(α)cos(β)+sin(α)sin(β)

=4512+3532

=410+3310

=4+3310

0.9196