How do you evaluate #cos (arcsin (3/5) - arccos (1/2)) #?

2 Answers
Jun 8, 2015

#cos [arcsin (3/5) - arccos (1/2)] = #

Explanation:

#sin x = 3/5 = 0.6 #--> x = 36.87 and x = 180 - 36.87 = 143.13 deg

#cos y = 1/2# --> y = +- 60 deg

a. cos (x - y) = cos (143.13 - 60) = cos 83,13 #= 0.12#

b. cos (36.87 - 60) = cos (-23.23) = 0.92

Jun 8, 2015

An algebraic expression for this can be calculated using the properties of the right angled triangles with sides {3,4,5} and {1,sqrt(3),2} using the formula for #cos(alpha+beta)#.

Explanation:

#cos(alpha+beta)=cos(alpha)cos(beta)-sin(alpha)sin(beta)#

So

#cos(alpha-beta)=cos(alpha)cos(-beta)-sin(alpha)sin(-beta)#

#=cos(alpha)cos(beta)+sin(alpha)sin(beta)#

If #sin(alpha) = 3/5# and #0<=alpha<=pi/2# then

#cos(alpha) = 4/5#

If #cos(beta)=1/2# and #0<=beta<=pi/2# then

#sin(beta)=sqrt(3)/2#

Then

#cos(alpha-beta)#

#= cos(alpha)cos(beta)+sin(alpha)sin(beta)#

#= 4/5*1/2+3/5*sqrt(3)/2#

#= 4/10+(3sqrt(3))/10#

#= (4+3sqrt(3))/10#

#~= 0.9196#