How do you evaluate cos(arctan(2) +arctan(3))cos(arctan(2)+arctan(3))?

2 Answers
Apr 16, 2016

cos(arctan(2)+arctan(3)) = -sqrt(2)/2cos(arctan(2)+arctan(3))=22

Explanation:

Consider the following two right angled triangles:

enter image source here

Then:

{ (tan(alpha) = 2), (tan(beta) = 3) :}

Notice that:

{ (sin(alpha) = 2/sqrt(5)), (cos(alpha) = 1/sqrt(5)), (sin(beta) = 3/sqrt(10)), (cos(beta) = 1/sqrt(10)) :}

The sum of angles formula for cos tells us:

cos(alpha+beta) = cos(alpha) cos(beta) - sin(alpha) sin(beta)

=1/sqrt(5) 1/sqrt(10) - 2/sqrt(5) 3/sqrt(10)

=(1-6)/sqrt(50)=-5/(5sqrt(2))=-1/sqrt(2)=-sqrt(2)/2

Jul 16, 2016

cos(tan^-1 2+tan^-1 3)

=cos(tan^-1( (2+ 3)/(1-2*3)))

=cos(tan^-1( -1))

=cos(tan^-1( -tan(pi/4)))

=cos(tan^-1( tan(pi-pi/4)))

=cos(pi-pi/4)

=-cos(pi/4)

=-1/sqrt2