arctan(-5/12)arctan(−512) means an angle thetaθ whose tantheta=-5/12tanθ=−512. As such we have to find costhetacosθ.
costheta=1/sectheta=sqrt(1/sec^2theta)=sqrt(1/(1+tan^2theta))cosθ=1secθ=√1sec2θ=√11+tan2θ
Hence
costheta=sqrt(1/(1+(-5/12)^2))=sqrt(1/(1+25/144))cosθ=
⎷11+(−512)2=√11+25144
= sqrt(1/(169/144))=sqrt(144/169)=+-12/13√1169144=√144169=±1213
Hence cos[arctan(-5/12)]=+-12/13cos[arctan(−512)]=±1213