How do you evaluate cos[arctan(-5/12)]cos[arctan(512)]?

1 Answer
Mar 3, 2016

cos[arctan(-5/12)]=+-12/13cos[arctan(512)]=±1213

Explanation:

arctan(-5/12)arctan(512) means an angle thetaθ whose tantheta=-5/12tanθ=512. As such we have to find costhetacosθ.

costheta=1/sectheta=sqrt(1/sec^2theta)=sqrt(1/(1+tan^2theta))cosθ=1secθ=1sec2θ=11+tan2θ

Hence

costheta=sqrt(1/(1+(-5/12)^2))=sqrt(1/(1+25/144))cosθ=  11+(512)2=11+25144

= sqrt(1/(169/144))=sqrt(144/169)=+-12/131169144=144169=±1213

Hence cos[arctan(-5/12)]=+-12/13cos[arctan(512)]=±1213