How do you evaluate #cos(tan^-1(3/7))# without a calculator?

1 Answer
Oct 7, 2016

#costheta=+-7/sqrt58# depending on
whether #theta# is in #I# quadrant or #III# quadrant.

Explanation:

Let #tan^(-1)(3/7)=theta#, then #tantheta=3/7#

Note that we are seeking #cos(tan^(-1)(3/7))# ie. #costheta#

As #tantheta=3/7#,

#sec^2theta=1+(3/7)^2=1+9/49=58/49#

Hence #sectheta=+-sqrt58/7#

and #costheta=+-7/sqrt58# depending on whether #theta# is in #I# quadrant or #III# quadrant.