How do you evaluate int sqrt(x^2 + 14x)x2+14x dx?

Evaluate the integral. (Remember to use absolute values where appropriate. Use C for the constant of integration.)

int sqrt(x^2 + 14x)x2+14x dx?

1 Answer
Jun 17, 2017

The answer is =1/2(x+7)sqrt(x^2+14x)-49/2ln(|1/7(sqrt(x^2+14x)+(x+7))|)+C=12(x+7)x2+14x492ln(17(x2+14x+(x+7)))+C

Explanation:

We need

cosh^2theta-sinh^2theta=1cosh2θsinh2θ=1

cosh 2theta=2sinh^2theta+1cosh2θ=2sinh2θ+1

sinh^2theta=1/2(cosh 2theta-1)sinh2θ=12(cosh2θ1)

sinh2theta=2sinhthetacoshthetasinh2θ=2sinhθcoshθ

arc cosh x=ln(sqrt(x^2-1)+x)arccoshx=ln(x21+x)

We perform this integral by substitution but first we do some simplification

x^2+14x=x^2+14x+49-49=(x+7)^2-49x2+14x=x2+14x+4949=(x+7)249

The substitution is

x+7=7coshthetax+7=7coshθ

dx=7sinhtheta d thetadx=7sinhθdθ

sqrt((x+7)^2-49)=sqrt(49cosh^2theta-49)(x+7)249=49cosh2θ49

=7sqrt(cosh^2theta-1)=7cosh2θ1

=7sinh theta=7sinhθ

Sinh^2 theta=cosh^2theta-1=((x+7)/7)^2-1sinh2θ=cosh2θ1=(x+77)21

=(x^2+14x+49-49)/49=x2+14x+494949

=(x^2+14x)/49=x2+14x49

sinh theta=1/7sqrt(x^2+14x)sinhθ=17x2+14x

Therefore,

intsqrt(x^2+14x)dx=int7sinhtheta*7sinh theta d thetax2+14xdx=7sinhθ7sinhθdθ

=49int sinh^2 theta d theta=49sinh2θdθ

=49/2int(cosh 2theta-1) d theta=492(cosh2θ1)dθ

=49/2((sinh 2theta)/2-theta)=492(sinh2θ2θ)

=49/2(sinhthetacoshtheta-arc cosh((x+7)/7))=492(sinhθcoshθarccosh(x+77))

=(49/2*1/7*sqrt(x^2+14x)*(x+7)/7)-49/2(ln(sqrt((x+7)^2/49-1))+(x+7)/7)+C=(49217x2+14xx+77)492ln(x+7)2491+x+77+C

=1/2(x+7)sqrt(x^2+14x)-49/2ln(|1/7(sqrt(x^2+14x)+(x+7))|)+C=12(x+7)x2+14x492ln(17(x2+14x+(x+7)))+C