We need
cosh^2theta-sinh^2theta=1cosh2θ−sinh2θ=1
cosh 2theta=2sinh^2theta+1cosh2θ=2sinh2θ+1
sinh^2theta=1/2(cosh 2theta-1)sinh2θ=12(cosh2θ−1)
sinh2theta=2sinhthetacoshthetasinh2θ=2sinhθcoshθ
arc cosh x=ln(sqrt(x^2-1)+x)arccoshx=ln(√x2−1+x)
We perform this integral by substitution but first we do some simplification
x^2+14x=x^2+14x+49-49=(x+7)^2-49x2+14x=x2+14x+49−49=(x+7)2−49
The substitution is
x+7=7coshthetax+7=7coshθ
dx=7sinhtheta d thetadx=7sinhθdθ
sqrt((x+7)^2-49)=sqrt(49cosh^2theta-49)√(x+7)2−49=√49cosh2θ−49
=7sqrt(cosh^2theta-1)=7√cosh2θ−1
=7sinh theta=7sinhθ
Sinh^2 theta=cosh^2theta-1=((x+7)/7)^2-1sinh2θ=cosh2θ−1=(x+77)2−1
=(x^2+14x+49-49)/49=x2+14x+49−4949
=(x^2+14x)/49=x2+14x49
sinh theta=1/7sqrt(x^2+14x)sinhθ=17√x2+14x
Therefore,
intsqrt(x^2+14x)dx=int7sinhtheta*7sinh theta d theta∫√x2+14xdx=∫7sinhθ⋅7sinhθdθ
=49int sinh^2 theta d theta=49∫sinh2θdθ
=49/2int(cosh 2theta-1) d theta=492∫(cosh2θ−1)dθ
=49/2((sinh 2theta)/2-theta)=492(sinh2θ2−θ)
=49/2(sinhthetacoshtheta-arc cosh((x+7)/7))=492(sinhθcoshθ−arccosh(x+77))
=(49/2*1/7*sqrt(x^2+14x)*(x+7)/7)-49/2(ln(sqrt((x+7)^2/49-1))+(x+7)/7)+C=(492⋅17⋅√x2+14x⋅x+77)−492⎛⎝ln⎛⎝√(x+7)249−1⎞⎠+x+77⎞⎠+C
=1/2(x+7)sqrt(x^2+14x)-49/2ln(|1/7(sqrt(x^2+14x)+(x+7))|)+C=12(x+7)√x2+14x−492ln(∣∣∣17(√x2+14x+(x+7))∣∣∣)+C