How do you evaluate #Ln 432 = y#?
1 Answer
Apr 3, 2017
Explanation:
Suppose you know:
#log 2 ~~ 0.30103#
#log 3 ~~ 0.47712#
#ln 10 ~~ 2.302585#
Then:
#(ln 432)/(ln 10) = log 432 = log (2^4 3^3) = 4 log 2 + 3 log 3#
So:
#ln 432 = (ln 10)(4 log 2 + 3 log 3)#
#color(white)(ln 432) ~~ 2.302585*(4*0.30103 + 3*0.47712)#
#color(white)(ln 432) ~~ 6.0684#