How do you evaluate log_343 (7)?

1 Answer
Sep 23, 2016

log_343(7)=1/3

Explanation:

log_343(7)=x

Step 1: Rewrite as an exponential.
343^x=7

Step 2:Take the log of both sides.
log343^x=log7

Step 3: Use the log rule loga^x=xloga.
xlog343=log7

x=log7/log343color(white)(aaaa)Use a calculator
x=1/3

OR

Use the change of base formula log_ba=loga/logb
log_343(7)=log7/log343=1/3color(white)(aaa) Use a calculator

OR

Rewrite as an exponential and consider the powers of 7.
343^x=7

343=7^3 or root(3)343=7 or 343^(1/3)=7
x=1/3