How do you evaluate sec^-1(-sqrt2)?

2 Answers
Mar 6, 2018

color(green)( theta = (3pi) / 4 + 2kpi->k inZZ), color(blue )(theta = (5pi) / 4 + 2kpi->k inZZ)

Explanation:

theta = sec^-1 (-sqrt2)

sec theta = - sqrt2

sec theta is negative in II, III quadrants.

Hence theta = (3pi) / 4, (5pi) / 4

Since trigonometric function sec is periodic and repeats every 2pi,

color(green)( theta = (3pi) / 4 + 2kpi->k inZZ), color(blue )(theta = (5pi) / 4 + 2kpi->k inZZ)

Mar 6, 2018

x = (3pi)/4 + 2kpi
x = (5pi)/4 + 2kpi

Explanation:

sec^-1 (-sqrt2)
Find arccos x, that cos x = 1/(sec) = 1/-sqrt2 = - sqrt2/2.
cos x = -sqrt2/2
Trig Table and unit circle give 2 general solutions:
x = +- (3pi)/4 + 2kpi
Reminder:
arc x = - (3pi)/4 is co-terminal to arc x = (5pi)/4.
Answers:
x = (3pi)/4 + 2kpi
x = (5pi)/4 + 2kpi