# cos theta = sin ( pi/2 - theta ), theta in ( -oo, oo ) radian #
#sin^(-1) cos ( 3/4pi ) = sin^(-1)sin (pi/2 -3/4pi)#
#= sin^(-1)sin(-pi/4)#
#= -pi/4#.
For related information:
Had it been
#sin^(-1) cos (- 5/4pi)#
#= sin^(-1)sin ( pi/2 + 5/4pi)#
#= sin^(-1)sin (9pi/4)#
#ne 9pi/4#, as it is #notin [ - pi/2, pi/2]#.
The calculators' answer is #- 45^o#
There is need for the piecewise bijective definition
#(sin)^(-1)x = kpi + (-1)^k sin^(-1)x, k = 0, +- 1, +- 2, +- 3, ...#.
Here, in this example,
#(sin)^(-1) sin ( 9/4pi) = 9/4pi#,
in accordance with #f^(-1)f(x) = x#