How do you evaluate #sin^-1(sin((5pi)/3))#?

2 Answers
Mar 18, 2016

#=(5pi)/3#

Explanation:

Given #sin^-1(sin((5pi)/3))#
We know that
#sin^-1(sin(x))=cancel(sin^-1)(cancel(sin)(x))=(x)#
or #=x#

Following this we obtain
#sin^-1(sin((5pi)/3))=(5pi)/3#

Mar 18, 2016

#(4pi)/3, (5pi)/3#

Explanation:

Trig unit circle and trig table give -->
#sin ((5pi)/3) = sin (-pi/3 + (6pi)/3) = sin (-pi/3 + 2pi) = #
#= - sin (pi/3) = -sqrt3/2.#
Next, find #arcsin (-sqrt3/2)#
#x = -sqrt3/2# --> 2 solutions -->
arc #x = (4pi)/3# and arc #x = -pi/3# , or #x = (5pi)/3# (co-terminal)

Check.
#x = (4pi)/3# --> #sin x = - sin pi/3 = - sqrt3/2 = sin ((5pi)/3) #. OK
#x = (5pi)/3# --> #sin x = -sin (pi/3) = -sqrt3/2 = sin ((5pi)/3).# OK