How do you evaluate sin1(sin(5π3))?

2 Answers
Mar 18, 2016

=5π3

Explanation:

Given sin1(sin(5π3))
We know that
sin1(sin(x))=sin1(sin(x))=(x)
or =x

Following this we obtain
sin1(sin(5π3))=5π3

Mar 18, 2016

4π3,5π3

Explanation:

Trig unit circle and trig table give -->
sin(5π3)=sin(π3+6π3)=sin(π3+2π)=
=sin(π3)=32.
Next, find arcsin(32)
x=32 --> 2 solutions -->
arc x=4π3 and arc x=π3 , or x=5π3 (co-terminal)

Check.
x=4π3 --> sinx=sinπ3=32=sin(5π3). OK
x=5π3 --> sinx=sin(π3)=32=sin(5π3). OK