How do you evaluate sin^-1(sin((7pi)/10))sin1(sin(7π10))?

1 Answer
Feb 26, 2017

(7pi)/107π10

Explanation:

Recall that sin^-1(x)sin1(x) is the inverse of sin(x)sin(x)

Recall that a composition of inverse functions returns the independent variable.

f^-1(f(x))=xf1(f(x))=x

So, if f(x)=sin((7pi)/10)f(x)=sin(7π10) and f^-1(x)=sin^-1(f(x))f1(x)=sin1(f(x))

then f^-1(f(x))=sin^-1(sin((7pi)/10))=(7pi)/10f1(f(x))=sin1(sin(7π10))=7π10