How do you evaluate sin[2tan1(2)]?

1 Answer
Nov 25, 2016

-4/5

Explanation:

Consider the arc T in Quadrant 4, representing by the right triangle
OBM, with:
tan T = -2 --> OB = 1 ; BM = -2
Consequently, the radius hypotenuse OM=1+4=5
In this right triangle OBM,
sinT=15 and cosT=25

sin((2tan2(2))sin(2arctan(2))=sin(2T)
Use trig identity: sin 2a = 2sin a.cos a -->

sin2T=2sinT.cosT=2(15)(25)=45