How do you evaluate sin (arccos (2/8))?

1 Answer
Jun 23, 2015

sin(arccos(2/8))=sqrt(15)/4

Explanation:

Let

sin(cos^(-1)(2/8))=sin(x)" " "color(red)((1))

From color(red)((1));

x=cos^(-1)(2/8)

cosx=2/8

sinx=sqrt(1-cos^2(x)

sinx=sqrt(1-(2/8)^2

sinx=sqrt(1-4/64

sinx=sqrt(64-4)/sqrt64

sinx=sqrt60/sqrt64

sinx=sqrt(15xx4)/8

sinx=(2sqrt(15))/8

sinx=sqrt(15)/4

The above sinx value substitute in " " "color(red)((1))

sin(arccos(2/8))=sqrt(15)/4