How do you evaluate Sin(arcsin(3/5)+(arctan-2))?

1 Answer
May 21, 2017

-1/sqrt5.

Explanation:

Let arc sin(3/5)=x, and, arc tan(-2)=y; x,y in (-pi/2,pi/2).

:. sinx=3/5, and, tany=-2.

We note that, sinx > 0, x in (0,pi/2), &, tany <0, y in (-pi/2,0).

Since, the Reqd. Value

=sin(x+y)=sinxcosy+cosxsiny,.....(ast)

We have to find the values of cosy, siny and cosx.

sinx=3/5 rArr cosx=sqrt(1-sin^2x)=sqrt(1-9/25)=+-4/5,

"but, "because, x in (0,pi/2), cosx=+4/5.........(1).

Again, tany=-2 rArr secy=sqrt(1+tan^2y)=+-sqrt5, but with

y in (-pi/2,0), secy=+sqrt5," giving, "cosy=+1/sqrt5...(2).

Finally, siny=tany*cosy=-2*1/sqrt5=-2/sqrt5...........(3).

Utilising (1),(2) and (3) in (ast), we get,

"The Reqd. Value="(3/5)(1/sqrt5)+(4/5)(-2/sqrt5)=-1/sqrt5.

Enjoy Maths.!