How do you evaluate Sin(arcsin(3/5)+(arctan2))sin(arcsin(35)+(arctan2))?

1 Answer
Aug 11, 2016

The reqd. value =(11sqrt5)/25=11525.

Explanation:

Let arcsin(3/5)=alpha, &, arctan2=beta; alpha, beta in (-pi/2,pi/2)arcsin(35)=α,&,arctan2=β;α,β(π2,π2).

Hence, by defn., sinalpha=3/5>0 so, alpha in (0,pi/2)sinα=35>0so,α(0,π2), and,

tanbeta=2>0, so, beta in (0,pi/2)tanβ=2>0,so,β(0,π2)

Now, reqd. value

=sin(alpha+beta)=sinalphacosbeta+cosalphasinbeta.......(1)

Therefore, to find this, we will need cosalpha, sinbeta, cosbeta

sinalpha=3/5 rArr cosalpha=+sqrt(1-sin^2alpha)=+4/5, as, alpha in (0,pi/2)

cosbeta=1/secbeta=1/(+sqrt(1+tan^2beta))=1/(+sqrt5), and,

sinbeta=tanbetacosbeta=2(1/(+sqrt5))=+2/sqrt5, as beta in (0,pi/2)

Using all these in (1), we get,

the reqd. value =3/5*1/sqrt5+4/5*2/sqrt5=11/(5sqrt5)=(11sqrt5)/25.