How do you evaluate sin(arctan(14)+arccos(34))?

1 Answer
Jul 3, 2016

Multiple values possible but assuming angles A and B in first quadrant, sin(arctan(14)+arccos(34))=3+47417

Explanation:

Let A=arctan(14) and B=arccos(34) and thus

tanA=14 and cosB=34 and sinB=1(34)2=±74

tanA=14 leads to cotA=4 and

cscA=±1+cot2A=±1+42=±17 and sinA=±117 and cosA=±417 - note that they will have same sign.

Hence sin(arctan(14)+arccos(34))=sin(A+B)

= sinAcosB+cosAsinB

Hence assuming all angles in first quadrant,

sin(A+B)=117×34+41774=3+47417