How do you evaluate #sin(sin^-1(10/3))#?
1 Answer
For Real valued
#sin(sin^(-1)(10/3)) = 10/3#
as we would hope.
Explanation:
If
But...
Note that:
#e^(i theta) = cos theta + i sin theta#
Hence we find:
#cos theta = (e^(i theta) + e^(-i theta))/2#
#sin theta = (e^(i theta) - e^(-i theta))/(2i)#
We can use these to extend the definition of
#cos z = (e^(iz) + e^(-iz))/2#
#sin z = (e^(iz) - e^(-iz))/(2i)#
So what values of
Suppose:
#10/3 = sin z = (e^(iz) - e^(-iz))/(2i)#
Multiplying both ends by
#e^(iz) - e^(-iz) = 20/3i#
Multiplying through by
#(e^(iz))^2-20/3i (e^(iz)) - 1 = 0#
Using the quadratic formula, we find:
#e^(iz) = (20/3i+-sqrt(-400/9+4))/2#
#color(white)(e^(iz)) = 10/3i+-sqrt(91)/3i#
#color(white)(e^(iz)) = 1/3(10+-sqrt(91))i#
Hence:
#z = 1/i(ln(1/3(10+-sqrt(91))i))+2kpi#
#color(white)(z) = 2kpi-i (ln(1/3(10+-sqrt(91))i))#
Rather than spend time figuring out which of these might be the best candidate for the principal value of
Then:
#sin z = sin (2kpi-i (ln(1/3(10+-sqrt(91))i)))#
#color(white)(sin z) = sin (-i (ln(1/3(10+-sqrt(91))i)))#
#color(white)(sin z) = (e^(ln(1/3(10+-sqrt(91))i))-e^(-ln(1/3(10+-sqrt(91))i)))/(2i)#
#color(white)(sin z) = (1/3(10+-sqrt(91))i-1/(1/3(10+-sqrt(91))i))/(2i)#
#color(white)(sin z) = (1/3(10+-sqrt(91))i+1/3(10 color(white)(.)bar("+")color(white)(.) sqrt(91))i)/(2i)#
#color(white)(sin z) = 10/3#