How do you evaluate \sum _ { n = 1} ^ { 20} ( n + n ^ { 3} ) 20n=1(n+n3)?

1 Answer
May 10, 2017

sum_(n=1)^20 (n+n^3) = 4431020n=1(n+n3)=44310

Explanation:

Let:

S = sum_(n=1)^20 (n+n^3) S=20n=1(n+n3)

We need the standard formula:

sum_(r=1)^n r \ = 1/2n(n+1)
sum_(r=1)^n r^2 = 1/4n^2(n+1)^2

Which gives us:
S = sum_(n=1)^20 n+sum_(n=1)^20 n^3
\ \ = 1/2(20)(21)+1/4(20^2)(21^2)
\ \ = 1/2(420)+1/4(400)(441)
\ \ = 210 + (100)(441)
\ \ = 210 + 44100
\ \ = 44310