How do you evaluate \sum _ { n = 1} ^ { 20} ( n + n ^ { 3} ) 20∑n=1(n+n3)?
1 Answer
May 10, 2017
sum_(n=1)^20 (n+n^3) = 4431020∑n=1(n+n3)=44310
Explanation:
Let:
S = sum_(n=1)^20 (n+n^3) S=20∑n=1(n+n3)
We need the standard formula:
sum_(r=1)^n r \ = 1/2n(n+1)
sum_(r=1)^n r^2 = 1/4n^2(n+1)^2
Which gives us: