How do you evaluate tan^-1(tan((13pi)/6))?

1 Answer
Jan 9, 2017

pi/6.

Explanation:

tan^-1{tan((13pi)/6)}=tan^-1{tan((12pi+pi)/6)}

=tan^-1{tan(2pi+(pi)/6)}

=tan^-1{tan((pi)/6)}...[because, tan(2pi+x)=tanx]

=pi/6

In the last step, we have used the following Defn. of tan^-1 fun.:

theta=tan^-1x, x in RR iff tantheta=x, theta in (-pi/2,pi/2).