How do you evaluate #tan^-1(tan((5pi)/6))#?
2 Answers
Aug 4, 2016
Explanation:
Aug 4, 2016
Explanation:
-
#color(white)(X) tan theta = tan((5pi)/6)# -
#color(white)(X) -pi/2 < theta < pi/2#
Note that
#tan ((5pi)/6 + npi) = tan ((5pi)/6)#
When
#(5pi)/6+npi = (5pi)/6 - pi = -pi/6#
which lies in the range
Thus:
#tan^(-1)(tan((5pi)/6)) = -pi/6#