How do you evaluate #tan^-1(tan((5pi)/6))#?

2 Answers
Aug 4, 2016

#=5pi/6#

Explanation:

#tan^-1(tan(5pi/6))#
#=5pi/6#

Aug 4, 2016

#tan^(-1)(tan((5pi)/6)) = -pi/6#

Explanation:

#theta = tan^(-1)(tan((5pi)/6))# by definition satisfies both of the conditions:

  • #color(white)(X) tan theta = tan((5pi)/6)#

  • #color(white)(X) -pi/2 < theta < pi/2#

Note that #tan# has period #pi#, so for any integer #n#:

#tan ((5pi)/6 + npi) = tan ((5pi)/6)#

When #n = -1#, we have:

#(5pi)/6+npi = (5pi)/6 - pi = -pi/6#

which lies in the range #(-pi/2, pi/2)#, so satisfies the second condition for #tan^(-1)#

Thus:

#tan^(-1)(tan((5pi)/6)) = -pi/6#