How do you evaluate tan(-7pi/6)? Trigonometry Right Triangles Trigonometric Functions of Any Angle 1 Answer Nghi N. Nov 5, 2015 Evaluate# tan ((-7pi)/6)# Ans: #-sqrt3/3# Explanation: #tan ((-7pi)/6) = tan ((5pi)/6 - (12pi)/6) = tan ((5pi)/6 - 2pi) = # #= tan ((5pi)/6) = -sqrt3/3# (Trig Table) Answer link Related questions How do you find the trigonometric functions of any angle? What is the reference angle? How do you use the ordered pairs on a unit circle to evaluate a trigonometric function of any angle? What is the reference angle for #140^\circ#? How do you find the value of #cot 300^@#? What is the value of #sin -45^@#? How do you find the trigonometric functions of values that are greater than #360^@#? How do you use the reference angles to find #sin210cos330-tan 135#? How do you know if #sin 30 = sin 150#? How do you show that #(costheta)(sectheta) = 1# if #theta=pi/4#? See all questions in Trigonometric Functions of Any Angle Impact of this question 5366 views around the world You can reuse this answer Creative Commons License