How do you evaluate tan(csc^-1(sqrt7/2)) without a calculator?

3 Answers
Aug 13, 2016

tan(csc^(-1)(sqrt(7)/2)) = (2sqrt(3))/3

Explanation:

Consider a triangle with sides 2, sqrt(3) and sqrt(7).

It is a right angled triangle, since:

2^2+(sqrt(3))^2 = 4+3 = 7 = (sqrt(7))^2

Since csc theta = 1/sin theta = "hypotenuse"/"opposite", and tan theta = "opposite"/"adjacent" we have:

"hypotenuse" = sqrt(7)

"opposite" = 2

"adjacent" = sqrt(3)

tan(csc^(-1)(sqrt(7)/2)) = 2/sqrt(3) = (2sqrt(3))/3

Aug 13, 2016

=(2sqrt3)/3

Explanation:

Let theta=csc^-1(sqrt(7)/2)
or
csctheta=sqrt7/2
or
1/sintheta=sqrt7/2
or
sintheta=2/sqrt7
or
theta=sin^-1(2/sqrt7)
Hence
p/h=2/sqrt7
costheta=b/h
or
costheta=sqrt(h^2-p^2)/h
or
costheta=(sqrt((sqrt7)^2-2^2))/(sqrt7)
or
costheta=sqrt(7-4)/sqrt7
or
costheta=sqrt3/sqrt7
Therefore
tantheta=sintheta/costheta
or
tan theta=(2/sqrt7)/((sqrt3)/sqrt7)
or
tan theta=2/sqrt3
or
tan(csc^-1(sqrt(7)/2))=2/sqrt3
or
tan(csc^-1(sqrt(7)/2))=(2sqrt3)/3

Sep 25, 2016

tan(csc^-1(sqrt7/2))

=tan(cot^-1(sqrt((sqrt7/2)^2-1)))

=tan(cot^-1sqrt(7/4-1))

=tan(cot^-1sqrt(3/4))

=tan(tan^-1(2/sqrt3))=2/sqrt3=(2sqrt3)/3