How do you evaluate the definite integral #int (5-16x^-3) dx# from #[1,2]#? Calculus Introduction to Integration Definite and indefinite integrals 1 Answer ali ergin Aug 11, 2016 #int_1^2 (5-16x^-3)d x=1# Explanation: #int_1^2 (5-16x^-3)d x=?# #int_1^2 (5-16x^-3)d x=|5x+16*1/2x^-2|_1^2# #int_1^2 (5-16x^-3)d x=(5*2+8*2^-2)-(5*1+8*1^-2)# #int_1^2 (5-16x^-3)d x=(10+8/4)-(5+8/1)# #int_1^2 (5-16x^-3)d x=14-13# #int_1^2 (5-16x^-3)d x=1# Answer link Related questions What is the difference between definite and indefinite integrals? What is the integral of #ln(7x)#? Is f(x)=x^3 the only possible antiderivative of f(x)=3x^2? If not, why not? How do you find the integral of #x^2-6x+5# from the interval [0,3]? What is a double integral? What is an iterated integral? How do you evaluate the integral #1/(sqrt(49-x^2))# from 0 to #7sqrt(3/2)#? How do you integrate #f(x)=intsin(e^t)dt# between 4 to #x^2#? How do you determine the indefinite integrals? How do you integrate #x^2sqrt(x^(4)+5)#? See all questions in Definite and indefinite integrals Impact of this question 1497 views around the world You can reuse this answer Creative Commons License