We use the Fundamental Theorem of Integral Calculus
: intf(t)dt=F(t) rArr ""int_a^bf(t)dt=F(b)-F(a).:∫f(t)dt=F(t)⇒∫baf(t)dt=F(b)−F(a).
So, we first find out the Indefinite Integral I=intsqrttlntdt,I=∫√tlntdt, using the
Method of Integration by Parts,which states that,
intuvdt=uintvdt-int{(du)/dtintvdt}dt.∫uvdt=u∫vdt−∫{dudt∫vdt}dt.
We apply this by taking u=lnt, &, v=sqrtt,u=lnt,&,v=√t, so that,
(du)/dt=1/t, &, intvdt=(t^(3/2))/(3/2)=(2/3)t^(3/2).dudt=1t,&,∫vdt=t3232=(23)t32.
:. I=(2/3)t^(3/2)lnt-int{1/t*(2/3)t^(3/2)}dt,
=(2/3)t^(3/2)lnt-(2/3)intt^(1/2)dt,
=(2/3)t^(3/2)lnt-(2/3)(2/3)t^(3/2),
:. I=(2/3)t^(3/2)lnt-(4/9)t^(3/2)+C.
Hence, int_2^1intsqrttlntdt=[(2/3)*1^(3/2)*ln1-(4/9)*1^(3/2)]-[(2/3)*2^(3/2)*ln2-(4/9)*2^(3/2)]
=[0-4/9]-[(2^(5/2)*ln2)/3-4/9*2^(3/2)]
=4/9(2^(3/2)-1)-2^(5/2)/3*(ln2)
=4/9(2sqrt2-1)-(4/3sqrt2)ln2.