How do you evaluate the definite integral xsin 2x dx from 0 to pi/2?

1 Answer
Feb 22, 2015

I would first use Integration by Parts to solve the indefinite integral and then apply the Fundamental Theorem of Calculus:
Integration by Parts:
intf(x)g(x)dx=F(x)g(x)-intF(x)g'(x)dx
Where:
F(x)=intf(x)dx
g'(x)=(dg(x))/dx
Let us choose:
f(x)=sin(2x)
g(x)=x
Applying Integration by Parts you get:
x*-cos(2x)/2-int-cos(2x)/2*1dx=
-xcos(2x)/2+sin(2x)/4
Now the Fundamental Theorem of Calculus:
int_a^bf(x)dx=F(b)-F(a)
In your case:
-xcos(2x)/2+sin(2x)/4|_0^(pi/2)=
=[-pi/2cos(pi)/2+sin(pi)/4]-0=
=pi/4