How do you evaluate the equation #arctan( -sqrt3 / 3 )#?

1 Answer
Mar 8, 2018

Converting the question in EQUATION FORM :
#color(red)(x)=arctan(-(sqrt3)/3)=-pi/6#

Explanation:

#color(red)((1)tan^(-1)(-X)=-tan^-1(X),X in R#
#color(red)((2)tan(pi/6)=1/sqrt3#.
#color(red)((3)tan^(-1)(tan(X))=X,AA X in(-pi/2,pi/2))#
If the equation is, #color(red)(x)=tan^(-1)(-(sqrt3)/3)#, then applying (1) we get #x=-tan^(-1)((sqrt3)/3)=-tan^(-1)(1/sqrt3)#, now from (2) we get#x=-tan^(-1)(tan(pi/6)),where,pi/6 in(-pi/2,pi/2)#
#x=-pi/6 to# [ Applying (3) ]