How do you evaluate the expression 6^(log_6(3x+2))6log6(3x+2)?

1 Answer
Oct 29, 2016

6^(log_6(3x+2))=3x+26log6(3x+2)=3x+2

Explanation:

Let 6^(log_6(3x+2))=u6log6(3x+2)=u

then using definition of logarithm that log_a m=b rArr m=a^blogam=bm=ab, we have

log_6 u=log_6(3x+2)log6u=log6(3x+2)

i.e. u=3x+2u=3x+2

Hence 6^(log_6(3x+2))=3x+26log6(3x+2)=3x+2