How do you evaluate the integral int 1/(1+sqrtx)11+x?

1 Answer
Dec 23, 2016

The answer is =2sqrtx-2ln(sqrtx+1)+ C=2x2ln(x+1)+C

Explanation:

We can perform this integral by substitution

Let u=sqrtxu=x, =>, du=(dx)/(2sqrtx)du=dx2x

So,

intdx/(sqrtx+1)=int(2sqrtxdu)/(u+1)dxx+1=2xduu+1

=2int(udu)/(u+1)=2uduu+1

u/(u+1)=1-1/(u+1)uu+1=11u+1

Therefore,

intdx/(sqrtx+1)=2int(1-1/(u+1))dudxx+1=2(11u+1)du

=2u-2ln(u+1)=2u2ln(u+1)

=2sqrtx-2ln(sqrtx+1)+ C=2x2ln(x+1)+C