How do you evaluate the integral int 1/(sintheta+costheta)1sinθ+cosθ?

2 Answers
May 1, 2018

I=1/sqrt2ln|(tan(x/2)+sqrt2-1)/(tan(x/2)-sqrt2-1)|+cI=12ln∣ ∣tan(x2)+21tan(x2)21∣ ∣+c

Explanation:

Here,

I=int1/(sinx+cosx)dxI=1sinx+cosxdx

Let,

tan(x/2)=t=>sec^2(x/2)*1/2dx=dttan(x2)=tsec2(x2)12dx=dt

=>dx=(2dt)/sec^2(x/2)=(2dt)/(1+tan^2(x/2))=(2dt)/(1+t^2dx=2dtsec2(x2)=2dt1+tan2(x2)=2dt1+t2

also, sinx=(2tan(x/2))/(1+tan^2(x/2))=(2t)/(1+t^2)sinx=2tan(x2)1+tan2(x2)=2t1+t2

and cosx=(1-tan^2(x/2))/(1+tan^2(x/2))=(1-t^2)/(1+t^2)cosx=1tan2(x2)1+tan2(x2)=1t21+t2

So,

I=int1/((2t)/(1+t^2)+(1-t^2)/(1+t^2))xx(2dt)/(1+t^2I=12t1+t2+1t21+t2×2dt1+t2

=int2/(2t+1-t^2)dt=22t+1t2dt

=2int1/(2-t^2+2t-1)dt=212t2+2t1dt

=2int1/((sqrt2)^2-(t-1)^2)dt=21(2)2(t1)2dt

=2xx1/(2sqrt2)ln|(t-1+sqrt2)/(t-1-sqrt2)|+c=2×122lnt1+2t12+c

Subst. back , t =tan(x/2)t=tan(x2)

I=1/sqrt2ln|(tan(x/2)+sqrt2-1)/(tan(x/2)-sqrt2-1)|+cI=12ln∣ ∣tan(x2)+21tan(x2)21∣ ∣+c

Note: For typing simplicity xx is taken in place of thetaθ.

May 1, 2018

I=1/sqrt2ln|sec(theta-pi/4)+tan(theta-pi/4)|+cI=12lnsec(θπ4)+tan(θπ4)+c

Explanation:

We know that,

color(red)(cosC+cosD=2cos((C+D)/2)cos((C-D)/2)cosC+cosD=2cos(C+D2)cos(CD2)

So,

sintheta+costheta=color(red)(cos(pi/2-theta)+costhetasinθ+cosθ=cos(π2θ)+cosθ

=color(red)(2cos((pi/2-theta+theta)/2)cos((pi/2-theta-theta)/2)=2cos(π2θ+θ2)cos(π2θθ2)

=2cos(pi/4)cos(pi/4-theta)=2cos(π4)cos(π4θ)

=2(1/sqrt2)cos(theta-pi/4)...to[as, cos(-alpha)=cosalpha ]

=sqrt2cos(theta-pi/4)

Now,

I=int1/(costheta+sintheta)d theta

=int1/(sqrt2cos(theta-pi/4))d theta

=1/sqrt2intsec(theta-pi/4)d theta

I=1/sqrt2ln|sec(theta-pi/4)+tan(theta-pi/4)|+c

Note:

ans(1) and ans(2) are same but in different form.