Here,
I=int1/(sinx+cosx)dxI=∫1sinx+cosxdx
Let,
tan(x/2)=t=>sec^2(x/2)*1/2dx=dttan(x2)=t⇒sec2(x2)⋅12dx=dt
=>dx=(2dt)/sec^2(x/2)=(2dt)/(1+tan^2(x/2))=(2dt)/(1+t^2⇒dx=2dtsec2(x2)=2dt1+tan2(x2)=2dt1+t2
also, sinx=(2tan(x/2))/(1+tan^2(x/2))=(2t)/(1+t^2)sinx=2tan(x2)1+tan2(x2)=2t1+t2
and cosx=(1-tan^2(x/2))/(1+tan^2(x/2))=(1-t^2)/(1+t^2)cosx=1−tan2(x2)1+tan2(x2)=1−t21+t2
So,
I=int1/((2t)/(1+t^2)+(1-t^2)/(1+t^2))xx(2dt)/(1+t^2I=∫12t1+t2+1−t21+t2×2dt1+t2
=int2/(2t+1-t^2)dt=∫22t+1−t2dt
=2int1/(2-t^2+2t-1)dt=2∫12−t2+2t−1dt
=2int1/((sqrt2)^2-(t-1)^2)dt=2∫1(√2)2−(t−1)2dt
=2xx1/(2sqrt2)ln|(t-1+sqrt2)/(t-1-sqrt2)|+c=2×12√2ln∣∣∣t−1+√2t−1−√2∣∣∣+c
Subst. back , t =tan(x/2)t=tan(x2)
I=1/sqrt2ln|(tan(x/2)+sqrt2-1)/(tan(x/2)-sqrt2-1)|+cI=1√2ln∣∣
∣∣tan(x2)+√2−1tan(x2)−√2−1∣∣
∣∣+c
Note: For typing simplicity xx is taken in place of thetaθ.