How do you evaluate the integral int (1-sqrtx)/(1+sqrtx)1x1+x?

1 Answer
Feb 23, 2017

-x + 4(1+ sqrt(x)) - 4ln|1 + sqrt(x)| + Cx+4(1+x)4ln1+x+C

Explanation:

Use partial fractions to get rid of the radical in the numerator.

A/1 + B/(1 + sqrt(x)) = (1 - sqrt(x))/(1 + sqrt(x))A1+B1+x=1x1+x

A(1 + sqrt(x)) + B = 1 - sqrt(x)A(1+x)+B=1x

A + Asqrt(x) + B = 1 - sqrt(x)A+Ax+B=1x

This means that {(A = -1), (A + B = 1):}

Solving, we get that A = -1 and B = 2. The integral becomes

int -1 + 2/(1 + sqrt(x))dx

int -1dx + int 2/(1 + sqrt(x))dx

int -1dx + 2int 1/(1 + sqrt(x))dx

Let u = 1 + sqrt(x). Then du = 1/(2sqrt(x))dx and dx = 2sqrt(x)du. We can also conclude that 2sqrt(x) = 2(u - 1), because sqrt(x) = u -1 and we have two of those.

int -1dx + 2int 1/u * 2(u - 1)du

int -1dx + 4int (u - 1)/u du

int -1dx + 4int u/udu - 4int 1/udu

int -1dx + 4int 1du- 4int 1/u du

-x + 4u - 4ln|u| + C

-x + 4(1+ sqrt(x)) - 4ln|1 + sqrt(x)| + C

Hopefully this helps!