How do you evaluate the integral int (1-sqrtx)/(1+sqrtx)∫1−√x1+√x?
1 Answer
-x + 4(1+ sqrt(x)) - 4ln|1 + sqrt(x)| + C−x+4(1+√x)−4ln∣∣1+√x∣∣+C
Explanation:
Use partial fractions to get rid of the radical in the numerator.
This means that
Solving, we get that
int -1 + 2/(1 + sqrt(x))dx
int -1dx + int 2/(1 + sqrt(x))dx
int -1dx + 2int 1/(1 + sqrt(x))dx
Let
int -1dx + 2int 1/u * 2(u - 1)du
int -1dx + 4int (u - 1)/u du
int -1dx + 4int u/udu - 4int 1/udu
int -1dx + 4int 1du- 4int 1/u du
-x + 4u - 4ln|u| + C
-x + 4(1+ sqrt(x)) - 4ln|1 + sqrt(x)| + C
Hopefully this helps!