How do you evaluate the integral int(1+x)^2 dx?
1 Answer
Aug 15, 2014
=x^3/3+x^2+x+C , whereC is a constantExplanation :
I=int(1+x)^2dx It can be solved by two methods,
(I) using Integration by Substitution
let's
1+x=t => dx=dt then,
intt^2dt=t^3/3+c Substituting
t back,
=(1+x)^3/3+c , wherec is a constant
=1/3(x^3+3x^2+3x+1)+c , wherec is a constant
=x^3/3+x^2+x+1/3+c , wherec is a constant
=x^3/3+x^2+x+C , whereC is again a constant
(II) Expanding
(1+x)^2=x^2+2x+1 , we get
int(x^2+2x+1)dx
=x^3/3+2x^2/2+x+c , wherec is a constant
=x^3/3+x^2+x+c , wherec is a constant