How do you evaluate the integral #int 2^x/(2^x+1)#? Calculus Techniques of Integration Integration by Parts 1 Answer Ananda Dasgupta Mar 23, 2018 # ln(2^x+1)/ln 2+C# Explanation: Since #d/dx(2^x+1)=2^x ln 2#, we have #int 2^x/(2^x+1)dx = 1/ln 2 int {d(2^x+1)}/(2^x+1) = ln(2^x+1)/ln 2+C# Answer link Related questions How do I find the integral #int(x*ln(x))dx# ? How do I find the integral #int(cos(x)/e^x)dx# ? How do I find the integral #int(x*cos(5x))dx# ? How do I find the integral #int(x*e^-x)dx# ? How do I find the integral #int(x^2*sin(pix))dx# ? How do I find the integral #intln(2x+1)dx# ? How do I find the integral #intsin^-1(x)dx# ? How do I find the integral #intarctan(4x)dx# ? How do I find the integral #intx^5*ln(x)dx# ? How do I find the integral #intx*2^xdx# ? See all questions in Integration by Parts Impact of this question 3065 views around the world You can reuse this answer Creative Commons License