How do you evaluate the integral int 2^x/(2^x+1)∫2x2x+1? Calculus Techniques of Integration Integration by Parts 1 Answer Ananda Dasgupta Mar 23, 2018 ln(2^x+1)/ln 2+Cln(2x+1)ln2+C Explanation: Since d/dx(2^x+1)=2^x ln 2ddx(2x+1)=2xln2, we have int 2^x/(2^x+1)dx = 1/ln 2 int {d(2^x+1)}/(2^x+1) = ln(2^x+1)/ln 2+C∫2x2x+1dx=1ln2∫d(2x+1)2x+1=ln(2x+1)ln2+C Answer link Related questions How do I find the integral int(x*ln(x))dx∫(x⋅ln(x))dx ? How do I find the integral int(cos(x)/e^x)dx∫(cos(x)ex)dx ? How do I find the integral int(x*cos(5x))dx∫(x⋅cos(5x))dx ? How do I find the integral int(x*e^-x)dx∫(x⋅e−x)dx ? How do I find the integral int(x^2*sin(pix))dx∫(x2⋅sin(πx))dx ? How do I find the integral intln(2x+1)dx∫ln(2x+1)dx ? How do I find the integral intsin^-1(x)dx∫sin−1(x)dx ? How do I find the integral intarctan(4x)dx∫arctan(4x)dx ? How do I find the integral intx^5*ln(x)dx∫x5⋅ln(x)dx ? How do I find the integral intx*2^xdx∫x⋅2xdx ? See all questions in Integration by Parts Impact of this question 3777 views around the world You can reuse this answer Creative Commons License