How do you evaluate the integral int cos^2(lnx)cos2(lnx)?

1 Answer
Jan 29, 2017

1/10xcos(2lnx)+1/5xsin(2lnx)+1/2x+C110xcos(2lnx)+15xsin(2lnx)+12x+C

Explanation:

I=intcos^2(lnx)color(red)(dx)I=cos2(lnx)dx

First, let t=lnxt=lnx. This implies that x=e^tx=et and that dt=1/xdxdt=1xdx. Then:

I=intcos^2(lnx)(x)(1/xdx)I=cos2(lnx)(x)(1xdx)

I=intcos^2(t)e^tdtI=cos2(t)etdt

From the identity cos(2t)=2cos^2(t)-1cos(2t)=2cos2(t)1, we write that cos^2(t)=1/2cos(2t)+1/2cos2(t)=12cos(2t)+12. Then:

I=int(1/2cos(2t)+1/2)e^tdtI=(12cos(2t)+12)etdt

I=1/2inte^tcos(2t)dt+1/2inte^tdtI=12etcos(2t)dt+12etdt

I=1/2inte^tcos(2t)dt+1/2e^tI=12etcos(2t)dt+12et

Let J=inte^tcos(2t)dtJ=etcos(2t)dt. This will be tackled in isolation. We will use integration by parts to solve it. Let:

{(u=cos(2t),=>,du=-2sin(2t)dt),(dv=e^tdt,=>,v=e^t):}

Then by the IBP formula:

J=e^tcos(2t)+int2e^tsin(2t)dt

Reapplying IBP to the remaining integral with new u and dv:

{(u=2sin(2t),=>,du=4cos(2t)),(dv=e^tdt,=>,v=e^t):}

So:

J=e^tcos(2t)+2e^tsin(2t)-4inte^tcos(2t)dt

Notice that J=inte^tcos(2t)dt has reappeared in the expression. We can now do some "integral algebra" to solve for J, the integral.

J=e^tcos(2t)+2e^tsin(2t)-4J

5J=e^tcos(2t)+2e^tsin(2t)

J=1/5e^tcos(2t)+2/5e^tsin(2t)

Returning to I:

I=1/2J+1/2e^t

I=1/10e^tcos(2t)+1/5e^tsin(2t)+1/2e^t

Our original substitution was t=lnx, also implying that x=e^t, so:

I=1/10xcos(2lnx)+1/5xsin(2lnx)+1/2x+C