How do you evaluate the integral int cos^2(lnx)∫cos2(lnx)?
1 Answer
Explanation:
I=intcos^2(lnx)color(red)(dx)I=∫cos2(lnx)dx
First, let
I=intcos^2(lnx)(x)(1/xdx)I=∫cos2(lnx)(x)(1xdx)
I=intcos^2(t)e^tdtI=∫cos2(t)etdt
From the identity
I=int(1/2cos(2t)+1/2)e^tdtI=∫(12cos(2t)+12)etdt
I=1/2inte^tcos(2t)dt+1/2inte^tdtI=12∫etcos(2t)dt+12∫etdt
I=1/2inte^tcos(2t)dt+1/2e^tI=12∫etcos(2t)dt+12et
Let
{(u=cos(2t),=>,du=-2sin(2t)dt),(dv=e^tdt,=>,v=e^t):}
Then by the IBP formula:
J=e^tcos(2t)+int2e^tsin(2t)dt
Reapplying IBP to the remaining integral with new
{(u=2sin(2t),=>,du=4cos(2t)),(dv=e^tdt,=>,v=e^t):}
So:
J=e^tcos(2t)+2e^tsin(2t)-4inte^tcos(2t)dt
Notice that
J=e^tcos(2t)+2e^tsin(2t)-4J
5J=e^tcos(2t)+2e^tsin(2t)
J=1/5e^tcos(2t)+2/5e^tsin(2t)
Returning to
I=1/2J+1/2e^t
I=1/10e^tcos(2t)+1/5e^tsin(2t)+1/2e^t
Our original substitution was
I=1/10xcos(2lnx)+1/5xsin(2lnx)+1/2x+C