How do you evaluate the integral int cos^3xsin^3x∫cos3xsin3x?
2 Answers
Explanation:
We want to rewrite so that either sine or cosine is all by itself with a power of
=int cosx(cos^2xsin^3x)=∫cosx(cos2xsin3x)
Rewrite
=int cosx(1 - sin^2x)sin^3xdx=∫cosx(1−sin2x)sin3xdx
=int cosx(sin^3x - sin^5x)dx=∫cosx(sin3x−sin5x)dx
The derivative of
=int cosx(u^3 - u^5) * (du)/cosx=∫cosx(u3−u5)⋅ducosx
This will eliminate, leaving us only with u's.
=int u^3 - u^5 du=∫u3−u5du
Integrate using
=1/4u^4 - 1/6u^6 + C=14u4−16u6+C
Resubstitute:
=1/4(sinx)^4 - 1/6(sinx)^6 + C=14(sinx)4−16(sinx)6+C
=1/4sin^4x - 1/6sin^6x + C=14sin4x−16sin6x+C
Hopefully this helps!
The answer is
Explanation:
Therefore,
So,