How do you evaluate the integral int cos^3xsin^3xcos3xsin3x?

2 Answers
Jan 4, 2017

=1/4sin^4x - 1/6sin^6x + C=14sin4x16sin6x+C

Explanation:

We want to rewrite so that either sine or cosine is all by itself with a power of 11 and use a u-substitution to eliminate it, leaving all terms in u that are easier to integrate.

=int cosx(cos^2xsin^3x)=cosx(cos2xsin3x)

Rewrite cos^2xcos2x using the pythagorean identity sin^2x + cos^2x = 1sin2x+cos2x=1.

=int cosx(1 - sin^2x)sin^3xdx=cosx(1sin2x)sin3xdx

=int cosx(sin^3x - sin^5x)dx=cosx(sin3xsin5x)dx

The derivative of sinxsinx is cosxcosx. Accordingly, we take the substitution u = sinxu=sinx. Then du = cosxdxdu=cosxdx and dx = (du)/cosxdx=ducosx

=int cosx(u^3 - u^5) * (du)/cosx=cosx(u3u5)ducosx

This will eliminate, leaving us only with u's.

=int u^3 - u^5 du=u3u5du

Integrate using x^ndx = x^(n + 1)/(n + 1) + Cxndx=xn+1n+1+C.

=1/4u^4 - 1/6u^6 + C=14u416u6+C

Resubstitute:

=1/4(sinx)^4 - 1/6(sinx)^6 + C=14(sinx)416(sinx)6+C

=1/4sin^4x - 1/6sin^6x + C=14sin4x16sin6x+C

Hopefully this helps!

Jan 4, 2017

The answer is =1/192cos6x-3/64cos2x+C=1192cos6x364cos2x+C

Explanation:

cos^3x=1/4(cos3x+3cosx)cos3x=14(cos3x+3cosx)

sin^3x=1/4(3sinx-sin3x)sin3x=14(3sinxsin3x)

cos^3x*sin^3x=1/16(cos3x+3cosx)(3sinx-sin3x)cos3xsin3x=116(cos3x+3cosx)(3sinxsin3x)

=1/16(3cos3xsinx-cos3xsin3x+9cosxsinx-3sin3xcosx)=116(3cos3xsinxcos3xsin3x+9cosxsinx3sin3xcosx)

9cosxsinx=9/2sin2x9cosxsinx=92sin2x

cos3xsin3x=1/2sin6xcos3xsin3x=12sin6x

-3sin3xcosx+3cos3xsinx=-3(sin(3x-x))=-3sin2x3sin3xcosx+3cos3xsinx=3(sin(3xx))=3sin2x

Therefore,

cos^3x*sin^3x=1/16(9/2sin2x-3sin2x-1/2sin6x)cos3xsin3x=116(92sin2x3sin2x12sin6x)

=3/32sin2x-1/32sin6x=332sin2x132sin6x

So,

intcos^3x*sin^3xdx=3/32intsin2xdx-1/32intsin6xdxcos3xsin3xdx=332sin2xdx132sin6xdx

=(3/32*-cos2x*1/2)-(1/32*-cos6x*1/6)+C=(332cos2x12)(132cos6x16)+C

=1/192cos6x-3/64cos2x+C=1192cos6x364cos2x+C