Substitute #t=3x#:
#int dx/(1-cos3x) = 1/3 int (dt)/(1-cost)#
Use now the trigonometric identity:
#cost= (1-tan^2(t/2))/(1+tan^2(t/2))#
So that:
#1/(1-cost) = 1/(1-(1-tan^2(t/2))/(1+tan^2(t/2)))#
#1/(1-cost) = (1+tan^2(t/2))/((1+tan^2(t/2))-(1-tan^2(t/2)))#
#1/(1-cost) = (1+tan^2(t/2))/(1+tan^2(t/2)-1+tan^2(t/2))#
#1/(1-cost) = (1+tan^2(t/2))/(2tan^2(t/2))#
And as:
#1+tan^2alpha = 1+ sin^2alpha/cos^2alpha = (cos^2alpha+sin^2alpha)/cos^2alpha = 1/cos^2alpha = sec^2alpha#
we get:
# int (dt)/(1-cost) = int sec^2(t/2)/(2tan^2(t/2))dt#
Substitute now:
#u=tan(t/2)#
#du=1/2sec^2(t/2)dt#
and we have:
#int sec^2(t/2)/(2tan^2(t/2))dt = int (du)/u^2 = -1/u+C#
and undoing the substitution:
# int (dt)/(1-cost) = -1/tan(t/2)+C = -cot(t/2)+C#
#int dx/(1-cos3x) = -1/3cot((3x)/2)+C#