How do you evaluate the integral dx(1x2)52?

1 Answer
Aug 15, 2017

x(32x2)3(1x2)32+C

Explanation:

Let x=sinθ. This implies that dx=cosθdθ.

dx(1x2)52

=cosθdθ(1sin2θ)52

=cosθ(cos2θ)52dθ

=sec4θdθ

=sec2θ(1+tan2θ)dθ

Let u=tanθ so du=sec2θdθ.

=(1+u2)du

=u+13u3+C

=tanθ+13tan3θ+C

=13tanθ(3+tan2θ)+C

Where x=sinθ, we have a triangle where the opposite side is x and the hypotenuse is 1. Thus, the adjacent side is 1x2 and tanθ=x/1x2.

=x31x2(3+x21x2)

=131x2(3x21x2)

=x(32x2)3(1x2)32+C