Let x=sinθ. This implies that dx=cosθdθ.
∫dx(1−x2)52
=∫cosθdθ(1−sin2θ)52
=∫cosθ(cos2θ)52dθ
=∫sec4θdθ
=∫sec2θ(1+tan2θ)dθ
Let u=tanθ so du=sec2θdθ.
=∫(1+u2)du
=u+13u3+C
=tanθ+13tan3θ+C
=13tanθ(3+tan2θ)+C
Where x=sinθ, we have a triangle where the opposite side is x and the hypotenuse is 1. Thus, the adjacent side is √1−x2 and tanθ=x/√1−x2.
=x3√1−x2(3+x21−x2)
=13√1−x2(3−x21−x2)
=x(3−2x2)3(1−x2)32+C