How do you evaluate the integral int dx/(root3(x)+1)dx3x+1?

1 Answer
Apr 23, 2018

The integral is equal to 3/2(x^(2/3)-2x^(1/3)+2ln|x^(1/3)+1|)+C32(x232x13+2lnx13+1)+C.

Explanation:

color(white)=int1/(root3x+1)=13x+1 dxdx

=int1/(x^(1/3)+1)=1x13+1 dxdx

To solve the integral, substitute u=x^(1/3)+1u=x13+1, which means:

du=1/3x^(-2/3)dxdu=13x23dx

du=1/(3x^(2/3))dxdu=13x23dx

3x^(2/3)du=dx3x23du=dx

But we can solve for x^(2/3)x23 using our original substitution:

u=x^(1/3)+1u=x13+1

u-1=x^(1/3)u1=x13

(u-1)^2=x^(2/3)(u1)2=x23

Put this in the other equation:

3(u-1)^2du=dx3(u1)2du=dx

Plug this into the integral:

color(white)=int1/u*3(u-1)^2du=1u3(u1)2du

=3int(u-1)^2/u=3(u1)2u dudu

=3int(u^2-2u+1)/u=3u22u+1u dudu

=3int(u-2+1/u)=3(u2+1u) dudu

=3(intu=3(u du-int2du2 du+int1/udu)du+1udu)

=3(u^2/2-2u+ln|u|)+C=3(u222u+ln|u|)+C

=(3u^2)/2-6u+3ln|u|+C=3u226u+3ln|u|+C

=(3(x^(1/3)+1)^2)/2-6(x^(1/3)+1)+3ln|x^(1/3)+1|+C=3(x13+1)226(x13+1)+3lnx13+1+C

=(3(x^(2/3)+2x^(1/3)+1))/2-6(x^(1/3)+1)+3ln|x^(1/3)+1|+C=3(x23+2x13+1)26(x13+1)+3lnx13+1+C

=(3x^(2/3)+6x^(1/3)+3)/2-6x^(1/3)+6+3ln|x^(1/3)+1|+C=3x23+6x13+326x13+6+3lnx13+1+C

=(3x^(2/3)+6x^(1/3))/2-6x^(1/3)+3ln|x^(1/3)+1|+C+3/2+6=3x23+6x1326x13+3lnx13+1+C+32+6

=(3x^(2/3)+6x^(1/3)-12x^(1/3)+6ln|x^(1/3)+1|)/2+C=3x23+6x1312x13+6lnx13+12+C

=(3x^(2/3)-6x^(1/3)+6ln|x^(1/3)+1|)/2+C=3x236x13+6lnx13+12+C

=(3(x^(2/3)-2x^(1/3)+2ln|x^(1/3)+1|))/2+C=3(x232x13+2lnx13+1)2+C

=3/2(x^(2/3)-2x^(1/3)+2ln|x^(1/3)+1|)+C=32(x232x13+2lnx13+1)+C

That's the integral. Hope this helped!