How do you evaluate the integral ∫dxx2√x2−3? Calculus Techniques of Integration Integration by Parts 1 Answer Cem Sentin · mason m Aug 31, 2017 After using x=√3⋅secu and dx=√3⋅secu⋅tanu⋅du transforms, this integral became, ∫√3⋅secu⋅tanu⋅(du)3(secu)2⋅√3⋅tanu =13⋅∫dusecu =13⋅∫cosu⋅du =13⋅sinu+C After using x=√3⋅secu, secu=x√3, tanu=√x2−3√3 and sinu=tanusecu=√x2−3x inverse transforms, I found, ∫dxx2⋅√x2−3=√x2−33x+C Explanation: I used x=√3⋅secu and dx=√3⋅secu⋅tanu⋅du transform Answer link Related questions How do I find the integral ∫(x⋅ln(x))dx ? How do I find the integral ∫(cos(x)ex)dx ? How do I find the integral ∫(x⋅cos(5x))dx ? How do I find the integral ∫(x⋅e−x)dx ? How do I find the integral ∫(x2⋅sin(πx))dx ? How do I find the integral ∫ln(2x+1)dx ? How do I find the integral ∫sin−1(x)dx ? How do I find the integral ∫arctan(4x)dx ? How do I find the integral ∫x5⋅ln(x)dx ? How do I find the integral ∫x⋅2xdx ? See all questions in Integration by Parts Impact of this question 2839 views around the world You can reuse this answer Creative Commons License