How do you evaluate the integral #int e^x(e^x+1)^3#? Calculus Techniques of Integration Integration by Parts 1 Answer Ratnaker Mehta Jan 19, 2017 #1/4(e^x+1)^4+C#. Explanation: Suppose that (e^x+1)=t :. e^xdx=dt# Hence, #inte^x(e^x+1)^3dx=int(e^x+1)^3e^xdx# #=t^3dt=t^4/4# #=1/4(e^x+1)^4+C#. Answer link Related questions How do I find the integral #int(x*ln(x))dx# ? How do I find the integral #int(cos(x)/e^x)dx# ? How do I find the integral #int(x*cos(5x))dx# ? How do I find the integral #int(x*e^-x)dx# ? How do I find the integral #int(x^2*sin(pix))dx# ? How do I find the integral #intln(2x+1)dx# ? How do I find the integral #intsin^-1(x)dx# ? How do I find the integral #intarctan(4x)dx# ? How do I find the integral #intx^5*ln(x)dx# ? How do I find the integral #intx*2^xdx# ? See all questions in Integration by Parts Impact of this question 2064 views around the world You can reuse this answer Creative Commons License