How do you evaluate the integral #int ln(1+x^2)#?

1 Answer
Jan 20, 2017

#intln(1+x^2)dx=xln(1+x^2)-2x+2arctan(x)+C#

Explanation:

#I=intln(1+x^2)dx#

Integration by parts takes the form #intudv=uv-intvdu#. For the given integral, let:

#u=ln(1+x^2)#

#color(white)(u=ln(1+x^2))du=(2x)/(1+x^2)dx#

#dv=dx#

#color(white)(dv=dx)v=x#

Then:

#I=uv-intvdu#

#I=xln(1+x^2)-int(2x^2)/(1+x^2)dx#

#I=xln(1+x^2)-int(2(1+x^2)-2)/(1+x^2)dx#

#I=xln(1+x^2)-int(2-2/(1+x^2))dx#

#I=xln(1+x^2)-2intdx+2intdx/(1+x^2)#

#I=xln(1+x^2)-2x+2arctan(x)+C#