How do you evaluate the integral int ln(1+x^2)∫ln(1+x2)?
1 Answer
Jan 20, 2017
Explanation:
I=intln(1+x^2)dxI=∫ln(1+x2)dx
Integration by parts takes the form
u=ln(1+x^2)u=ln(1+x2)
color(white)(u=ln(1+x^2))du=(2x)/(1+x^2)dxu=ln(1+x2)du=2x1+x2dx
dv=dxdv=dx
color(white)(dv=dx)v=xdv=dxv=x
Then:
I=uv-intvduI=uv−∫vdu
I=xln(1+x^2)-int(2x^2)/(1+x^2)dxI=xln(1+x2)−∫2x21+x2dx
I=xln(1+x^2)-int(2(1+x^2)-2)/(1+x^2)dxI=xln(1+x2)−∫2(1+x2)−21+x2dx
I=xln(1+x^2)-int(2-2/(1+x^2))dxI=xln(1+x2)−∫(2−21+x2)dx
I=xln(1+x^2)-2intdx+2intdx/(1+x^2)I=xln(1+x2)−2∫dx+2∫dx1+x2
I=xln(1+x^2)-2x+2arctan(x)+CI=xln(1+x2)−2x+2arctan(x)+C