How do you evaluate the integral int ln(1+x^2)ln(1+x2)?

1 Answer
Jan 20, 2017

intln(1+x^2)dx=xln(1+x^2)-2x+2arctan(x)+Cln(1+x2)dx=xln(1+x2)2x+2arctan(x)+C

Explanation:

I=intln(1+x^2)dxI=ln(1+x2)dx

Integration by parts takes the form intudv=uv-intvduudv=uvvdu. For the given integral, let:

u=ln(1+x^2)u=ln(1+x2)

color(white)(u=ln(1+x^2))du=(2x)/(1+x^2)dxu=ln(1+x2)du=2x1+x2dx

dv=dxdv=dx

color(white)(dv=dx)v=xdv=dxv=x

Then:

I=uv-intvduI=uvvdu

I=xln(1+x^2)-int(2x^2)/(1+x^2)dxI=xln(1+x2)2x21+x2dx

I=xln(1+x^2)-int(2(1+x^2)-2)/(1+x^2)dxI=xln(1+x2)2(1+x2)21+x2dx

I=xln(1+x^2)-int(2-2/(1+x^2))dxI=xln(1+x2)(221+x2)dx

I=xln(1+x^2)-2intdx+2intdx/(1+x^2)I=xln(1+x2)2dx+2dx1+x2

I=xln(1+x^2)-2x+2arctan(x)+CI=xln(1+x2)2x+2arctan(x)+C