How do you evaluate the integral #int ln(1+x^2)#?
1 Answer
Jan 20, 2017
Explanation:
#I=intln(1+x^2)dx#
Integration by parts takes the form
#u=ln(1+x^2)#
#color(white)(u=ln(1+x^2))du=(2x)/(1+x^2)dx#
#dv=dx#
#color(white)(dv=dx)v=x#
Then:
#I=uv-intvdu#
#I=xln(1+x^2)-int(2x^2)/(1+x^2)dx#
#I=xln(1+x^2)-int(2(1+x^2)-2)/(1+x^2)dx#
#I=xln(1+x^2)-int(2-2/(1+x^2))dx#
#I=xln(1+x^2)-2intdx+2intdx/(1+x^2)#
#I=xln(1+x^2)-2x+2arctan(x)+C#