How do you evaluate the integral int ln(x^2sqrt(4x-1))ln(x24x1)?

1 Answer
Dec 28, 2016

By the laws of logarithms:

=intlnx^2 + lnsqrt(4x - 1)dx=lnx2+ln4x1dx

=intlnx^2dx + intlnsqrt(4x - 1)dx=lnx2dx+ln4x1dx

=2intlnxdx+ 1/2intln(4x - 1)dx=2lnxdx+12ln(4x1)dx

We let u = 4x - 1u=4x1. Then du = 4dxdu=4dx and dx = (du)/4dx=du4.

=2intlnxdx + 1/2intlnu (du)/4=2lnxdx+12lnudu4

=2intlnxdx + 1/8intlnudu=2lnxdx+18lnudu

We need to integrate the natural logarithm function by parts. Let u = lnxu=lnx and dv = 1dxdv=1dx. Then du = 1/xdxdu=1xdx and v = xv=x.

int(udv) = uv - int(vdu)(udv)=uv(vdu)

int(lnx) = xlnx - int(x * 1/x)dx(lnx)=xlnx(x1x)dx

int(lnx) = xlnx - x + C(lnx)=xlnxx+C

Back to the original integral.

=2(xlnx - x) + 1/8(u lnu -u)+ C=2(xlnxx)+18(ulnuu)+C

=2xlnx - 2x + 1/8(4x - 1ln(4x - 1) - (4x - 1)) + C=2xlnx2x+18(4x1ln(4x1)(4x1))+C

=2xlnx - 2x + ((4x - 1)ln(4x - 1) - 4x + 1)/8 + C=2xlnx2x+(4x1)ln(4x1)4x+18+C

Hopefully this helps!