By the laws of logarithms:
=intlnx^2 + lnsqrt(4x - 1)dx=∫lnx2+ln√4x−1dx
=intlnx^2dx + intlnsqrt(4x - 1)dx=∫lnx2dx+∫ln√4x−1dx
=2intlnxdx+ 1/2intln(4x - 1)dx=2∫lnxdx+12∫ln(4x−1)dx
We let u = 4x - 1u=4x−1. Then du = 4dxdu=4dx and dx = (du)/4dx=du4.
=2intlnxdx + 1/2intlnu (du)/4=2∫lnxdx+12∫lnudu4
=2intlnxdx + 1/8intlnudu=2∫lnxdx+18∫lnudu
We need to integrate the natural logarithm function by parts. Let u = lnxu=lnx and dv = 1dxdv=1dx. Then du = 1/xdxdu=1xdx and v = xv=x.
int(udv) = uv - int(vdu)∫(udv)=uv−∫(vdu)
int(lnx) = xlnx - int(x * 1/x)dx∫(lnx)=xlnx−∫(x⋅1x)dx
int(lnx) = xlnx - x + C∫(lnx)=xlnx−x+C
Back to the original integral.
=2(xlnx - x) + 1/8(u lnu -u)+ C=2(xlnx−x)+18(ulnu−u)+C
=2xlnx - 2x + 1/8(4x - 1ln(4x - 1) - (4x - 1)) + C=2xlnx−2x+18(4x−1ln(4x−1)−(4x−1))+C
=2xlnx - 2x + ((4x - 1)ln(4x - 1) - 4x + 1)/8 + C=2xlnx−2x+(4x−1)ln(4x−1)−4x+18+C
Hopefully this helps!