How do you evaluate the integral #int sec^3x/tanx#? Calculus Introduction to Integration Integrals of Trigonometric Functions 1 Answer Ratnaker Mehta Jan 19, 2017 #1/2ln|(cosx-1)/(cosx+1)|+secx+C, or, ln|tan(x/2)|+secx+C#. Explanation: Let #I=intsec^3x/tanxdx=int(1/cos^3x)(cosx/sinx)dx# #=int1/(cos^2xsinx)dx=intsinx/(cos^2xsin^2x)dx# #:. I=-int{(-sinx)/{cos^2x(1-cos^2x)}dx# Substituting #cosx=t," so that, "-sinxdx=dt#, we get, #I=int1/{t^2(t^2-1)}dt=int{t^2-(t^2-1)}/{t^2(t^2-1)}dt# #=int[t^2/{t^2(t^2-1)}-(t^2-1)/{t^2(t^2-1)}]dt# #=int[1/(t^2-1)-1/t^2]dt# #1/2ln|(t-1)/(t+1)|+1/t#. Since, #t=cosx#, we have, #I=1/2ln|(cosx-1)/(cosx+1)|+secx+C#. Enjoy Maths.! N.B.:-#I# can further be simplified as #ln|tan(x/2)|+secx+C#. Answer link Related questions How do I evaluate the indefinite integral #intsin^3(x)*cos^2(x)dx# ? How do I evaluate the indefinite integral #intsin^6(x)*cos^3(x)dx# ? How do I evaluate the indefinite integral #intcos^5(x)dx# ? How do I evaluate the indefinite integral #intsin^2(2t)dt# ? How do I evaluate the indefinite integral #int(1+cos(x))^2dx# ? How do I evaluate the indefinite integral #intsec^2(x)*tan(x)dx# ? How do I evaluate the indefinite integral #intcot^5(x)*sin^4(x)dx# ? How do I evaluate the indefinite integral #inttan^2(x)dx# ? How do I evaluate the indefinite integral #int(tan^2(x)+tan^4(x))^2dx# ? How do I evaluate the indefinite integral #intx*sin(x)*tan(x)dx# ? See all questions in Integrals of Trigonometric Functions Impact of this question 9172 views around the world You can reuse this answer Creative Commons License