How do you evaluate the integral sin2xcos2xcosx from [π4,π4]?

1 Answer
Nov 4, 2016

π4π4sin2xcos2xcosxdx=ln(3+22)

Explanation:

Using the fundamental trig Identity sin2A+cos2A1 we have

π4π4sin2xcos2xcosxdx=π4π41cos2xcos2xcosxdx

=π4π412cos2xcosxdx
=π4π41cosx2cosxdx
=π4π4secx2cosxdx
=[ln|secx+tanx|2sinx]π4π4

=(lnsec(π4)+tan(π4)2sin(π4))(lnsec(π4)+tan(π4)2sin(π4))

=(ln(2+1)2122)(ln(21)2122)
=ln(2+1)2122ln(21)+2122
=ln(2+1)ln(21)
=ln(2+121)
=ln(2+1212+12+1)
=ln(2+22+121)
=ln(3+22)