How do you evaluate the integral ∫sin2x−cos2xcosx from [−π4,π4]?
1 Answer
Nov 4, 2016
Explanation:
Using the fundamental trig Identity
=∫π4−π41−2cos2xcosxdx
=∫π4−π41cosx−2cosxdx
=∫π4−π4secx−2cosxdx
=[ln|secx+tanx|−2sinx]π4−π4
=(ln∣∣sec(π4)+tan(π4)∣∣−2sin(π4))−(ln∣∣sec(−π4)+tan(−π4)∣∣−2sin(−π4))
=(ln(√2+1)−212√2)−(ln(√2−1)−212√2)
=ln(√2+1)−212√2−ln(√2−1)+212√2
=ln(√2+1)−ln(√2−1)
=ln(√2+1√2−1)
=ln(√2+1√2−1⋅√2+1√2+1)
=ln(2+2√2+12−1)
=ln(3+2√2)