How do you evaluate the integral #int x^3e^(x^2)"d"x#? Calculus Techniques of Integration Integration by Parts 1 Answer Harish Chandra Rajpoot Jun 21, 2018 #\int x^3e^{x^2}\ dx=1/2(x^2-1)e^{x^2}+C# Explanation: Let #x^2=t\implies 2x=dt\ or \ xdx=\frac{dt}{2}# #\therefore \int x^3e^{x^2}\ dx# #=\int x^2e^{x^2}(xdx)# #=\int te^t\frac{dt}{2}# #=\frac{1}{2}\int te^t\ dt# #=\1/2(t\int e^t \dt-\int (\frac{d}{dt}(t)\cdot \int e^t\ dt)dt)# #=\1/2(te^t-\int (1\cdot e^t)dt)# #=\1/2(te^t-\int e^tdt)# #=\1/2(te^t-e^t)+C# #=\1/2(t-1)e^t+C# #=1/2(x^2-1)e^{x^2}+C# Answer link Related questions How do I find the integral #int(x*ln(x))dx# ? How do I find the integral #int(cos(x)/e^x)dx# ? How do I find the integral #int(x*cos(5x))dx# ? How do I find the integral #int(x*e^-x)dx# ? How do I find the integral #int(x^2*sin(pix))dx# ? How do I find the integral #intln(2x+1)dx# ? How do I find the integral #intsin^-1(x)dx# ? How do I find the integral #intarctan(4x)dx# ? How do I find the integral #intx^5*ln(x)dx# ? How do I find the integral #intx*2^xdx# ? See all questions in Integration by Parts Impact of this question 6814 views around the world You can reuse this answer Creative Commons License