How do you evaluate the integral ∫x√x−1−√x?
1 Answer
Jan 29, 2017
Explanation:
Multiply first by the conjugate of the denominator to simplify the integrand.
I=∫x(√x−1+√x)(√x−1−√x)(√x−1+√x)dx
The denominator is now in the form
I=∫x(√x−1+√x)(x−1)−xdx
I=−∫x(√x−1+√x)dx
Distributing, splitting up the integral and rewriting:
I=−∫x(x−1)12dx−∫x32dx
The second integral can be directly integrated using
I=−∫x(x−1)12dx−x5252
I=−∫x(x−1)12dx−25x52
For the remaining integral, let
I=−∫(u+1)u12du−25x52
Distributing
I=−∫u32du−∫u12du−25x52
Using the rule from earlier:
I=−u5252−u3232−25x52+C
From
I=−25(x−1)52−23(x−1)32−25x52+C