How do you evaluate the integral ∫xarcsec(x2)? Calculus Techniques of Integration Integration by Parts 1 Answer Cem Sentin May 20, 2018 ∫x⋅arcsec(x2)⋅dx =12x2⋅arcsec(x2)−12ln(x2+√x4−1)+C Explanation: ∫x⋅arcsec(x2)⋅dx =12∫2x⋅arcsec(x2)⋅dx After using y=x2 and 2x⋅dx=dy transforms, this integral became 12∫arcsecy⋅dy After using z=arcsecy, y=secz and dy=secz⋅tanz⋅dz transforms, it became 12∫z⋅secz⋅tanz⋅dz =12z⋅secz−12∫secz⋅dz =12z⋅secz−12∫secz⋅(secz+tanz)⋅dzsecz+tanz =12z⋅secz−12ln(secz+tanz)+C For y=secz, tanz must be equal to √y2−1. Thus, 12y⋅arcsecy−12ln(y+√y2−1)+C =12x2⋅arcsec(x2)−12ln(x2+√x4−1)+C Answer link Related questions How do I find the integral ∫(x⋅ln(x))dx ? How do I find the integral ∫(cos(x)ex)dx ? How do I find the integral ∫(x⋅cos(5x))dx ? How do I find the integral ∫(x⋅e−x)dx ? How do I find the integral ∫(x2⋅sin(πx))dx ? How do I find the integral ∫ln(2x+1)dx ? How do I find the integral ∫sin−1(x)dx ? How do I find the integral ∫arctan(4x)dx ? How do I find the integral ∫x5⋅ln(x)dx ? How do I find the integral ∫x⋅2xdx ? See all questions in Integration by Parts Impact of this question 2153 views around the world You can reuse this answer Creative Commons License