How do you evaluate the integral #int1/(1+x^2)^2 dx# from #-oo# to #oo#?
1 Answer
Explanation:
First, for simplicity's sake, examining without the bounds:
#I=int1/(1+x^2)^2dx#
Apply the trig substitution
#I=intsec^2theta/(1+tan^2theta)^2d theta#
Since
#I=intsec^2theta/sec^4thetad theta=intcos^2thetad theta#
This can be solved through the cosine double angle formula: since
#I=1/2int(cos2theta+1)d theta=1/2intcos2thetad theta+1/2intd theta#
The first integral can be solved either through another substitution or by inspection.
#I=1/4sin2theta+1/2theta+C#
Using the identity
#I=1/2sinthetacostheta+1/2theta+C#
Here, note that
#I=1/(2+2tan^2theta)+1/2theta+C#
Using
#I=1/(2+2x^2)+1/2arctanx+C#
Reapplying the bounds:
#J=int_(-oo)^oo1/(1+x^2)^2dx=[1/(2+2x^2)+1/2arctanx]_(-oo)^oo#
Taking the limits at both infinities:
#J=(lim_(xrarroo)1/(2+2x^2)+1/2lim_(xrarroo)arctanx)-(lim_(xrarr-oo)1/(2+2x^2)+1/2lim_(xrarr-oo)arctanx)#
#J=(0+1/2(pi/2))-(0+1/2(-pi/2))#
#J=pi/4+pi/4=pi/2#